Swiss implant group invites dentists to Geneva symposium

Daniel Zimmermann

LEIPZIG, Germany: The International Team for Implantology (ITI) has announced that it will discuss new clinical methods for diagnosis and treatment planning at its upcoming World Symposium in Geneva, to be held from 15 to 17 April 2010. The forum, which is open to implant specialists worldwide, will be complemented by two full-day pre-Symposium courses on soft-tissue management and bone grafting. Simultaneous interpretation will be provided from English into 12 other languages, including Chinese, Japanese and Korean, the organiser said.

This year’s meeting, which also marks the 30th anniversary of the organisation, will be held for the 11th time. More than 100 experts from 25 countries are expected to attend the event. For the first time, the meeting will also be accompanied by an industry exhibition.

The Swiss-based ITI is an independent academic organisation dedicated to the promotion of evidence-based research in the field of implant dentistry. They also focus on the development of comprehensive treatment guidelines such as the ITI Treatment Guide series, which is claimed to be substantiated by extensive clinical testing and successful long-term results. Furthermore, ITI funds research and provides scholarships to young clinicians.

According to their own figures, the organisation currently has 7,000 members and divisions in over 24 countries.

Metal foam takes stress off implants

Claudia Salwiczek

NEW YORK, USA/LEIPZIG, Germany: A newly developed metal foam that mimics the natural structure of bones could help to prevent the rejection of biomedical body replacements such as dental implants. The composite material, which is made out of 100% steel and aluminium, is lighter than solid titanium and has an extraordinarily high-energy absorption capability, a paper by researchers at the North Carolina State University reports. In addition, the modulus of elasticity of the foam has been proven similar to that of bone.

Modulus of elasticity has been demonstrated as extremely important for biomedical implants. When a dental implant is placed in the body to replace a bone, it needs to manage the loads in the same way as the surrounding bone. If the modulus of elasticity of the implant is much larger than the bone, the implant will take over the load bearing and the surrounding bone will start to die, a process called stress shielding.

“Our foam can be a perfect match as an implant to prevent stress shielding,” said Dr Afsaneh Rabiei, Associate Professor of Mechanical and Aerospace Engineering at NC State and co-author of the paper. “The rough surface of the metal foam will also bond well with the new bone formed around it and let the body build inside its surface porosities.”

He concluded that through these features, mechanical stability and strength of implants inside the body could be significantly increased in the future.

VARIOLINK® N
The dual-light-curing luting composite system for glass-ceramic, lithium disilicate glass-ceramic and composite restorations.

MULTILINK® N
The self-curing luting composite with light-curing option for the adhesive luting of indirect restorations made of metal, metal-ceramic, silicate ceramic, oxide ceramic and composite.